Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.03.23286775

ABSTRACT

The impact of a prior SARS-CoV-2 infection on the progression of subsequent infections has been unclear. Using a convenience sample of 94,812 longitudinal RT-qPCR measurements from anterior nares and oropharyngeal swabs, we compared the SARS-CoV-2 viral kinetics of first vs. second infections, adjusting for viral variant, vaccination status, and age. Relative to first infections, second infections usually featured a lower peak viral concentration and faster clearance time, especially in individuals who received a vaccine dose between their first and second infection. Furthermore, a person's relative (rank-order) viral clearance time, compared to others infected with the same variant, was similar across first and second infections; that is, individuals who had a relatively fast clearance time in their first infection tended to also have a relatively fast clearance time in their second infection. These findings provide evidence that, like vaccination, immunity from a prior SARS-CoV-2 infection shortens the duration of subsequent acute SARS-CoV-2 infections principally by reducing viral clearance time. Additionally, there appears to be an inherent element of the immune response, or some other host factor, that shapes a person's relative ability to clear SARS-CoV-2 infection that persists across sequential infections.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.28.22273077

ABSTRACT

SARS-CoV-2 Variants of Concern (VOCs) continue to reshape the trajectory of the COVID-19 pandemic. However, why some VOCs, like Omicron, become globally dominant while the spread of others is limited is not fully understood. To address this question, we investigated the VOC Mu, which was first identified in Colombia in late 2020. Our study demonstrates that, although Mu is less sensitive to neutralization compared to variants that preceded it, it did not spread significantly outside of South and Central America. Additionally, we find evidence that the response to Mu was impeded by reporting delays and gaps in the global genomic surveillance system. Our findings suggest that immune evasion alone was not sufficient to outcompete highly transmissible variants that were circulating concurrently with Mu. Insights into the complex relationship between genomic and epidemiological characteristics of previous variants should inform our response to variants that are likely to emerge in the future.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.22.22269660

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continues to shape the coronavirus disease 2019 (Covid-19) pandemic. The detection and rapid spread of the SARS-CoV-2 Omicron variant (lineage B.1.1.529) in Botswana and South Africa became a global concern because it contained 15 mutations in the spike protein immunogenic receptor binding domain and was less neutralized by sera derived from vaccinees compared to the previously dominant Delta variant. To investigate if Omicron is more likely than Delta to cause infections in vaccinated persons, we analyzed 37,877 nasal swab PCR tests conducted from 12-26 December 2021 and calculated the test positivity rates for each variant by vaccination status. We found that the positivity rate among unvaccinated persons was higher for Delta (5.2%) than Omicron (4.5%). We found similar results in persons who received a single vaccine dose. Conversely, our results show that Omicron had higher positivity rates than Delta among those who received two doses within five months (Omicron = 4.7% vs. Delta = 2.6%), two doses more than five months ago (4.2% vs. 2.9%), and three vaccine doses (2.2% vs. 0.9%). Our estimates of Omicron positivity rates in persons receiving one or two vaccine doses were not significantly lower than unvaccinated persons but were 49.7% lower after three doses. In comparison, the reduction in Delta positivity rates from unvaccinated to 2 vaccine doses was 45.6-49.6% and to 3 vaccine doses was 83.2%. Despite the higher positivity rates for Omicron in vaccinated persons, we still found that 91.2% of the Omicron infections in our study occurred in persons who were eligible for 1 or more vaccine doses at the time of PCR testing. In conclusion, escape from vaccine-induced immunity likely contributed to the rapid rise in Omicron infections.


Subject(s)
Coronavirus Infections , COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.13.22269257

ABSTRACT

Background. The Omicron SARS-CoV-2 variant is responsible for a major wave of COVID-19, with record case counts reflecting high transmissibility and escape from prior immunity. Defining the time course of Omicron viral proliferation and clearance is crucial to inform isolation protocols aiming to minimize disease spread. Methods. We obtained longitudinal, quantitative RT-qPCR test results using combined anterior nares and oropharyngeal samples (n = 10,324) collected between July 5th, 2021 and January 10th, 2022 from the National Basketball Association's (NBA) occupational health program. We quantified the fraction of tests with PCR cycle threshold (Ct) values <30, chosen as a proxy for potential infectivity and antigen test positivity, on each day after first detection of suspected and confirmed Omicron infections, stratified by individuals detected under frequent testing protocols and those detected due to symptom onset or concern for contact with an infected individual. We quantified the duration of viral proliferation, clearance rate, and peak viral concentration for individuals with acute Omicron and Delta variant SARS-CoV-2 infections. Results. A total of 97 infections were confirmed or suspected to be from the Omicron variant and 107 from the Delta variant. Of 27 Omicron-infected individuals testing positive [≤]1 day after a previous negative or inconclusive test, 52.0% (13/25) were PCR positive with Ct values <30 at day 5, 25.0% (6/24) at day 6, and 13.0% (3/23) on day 7 post detection. Of 70 Omicron-infected individuals detected [≥]2 days after a previous negative or inconclusive test, 39.1% (25/64) were PCR positive with Ct values <30 at day 5, 33.3% (21/63) at day 6, and 22.2% (14/63) on day 7 post detection. Overall, Omicron infections featured a mean duration of 9.87 days (95% CI 8.83-10.9) relative to 10.9 days (95% CI 9.41-12.4) for Delta infections. The peak viral RNA based on Ct values was lower for Omicron infections than for Delta infections (Ct 23.3, 95% CI 22.4-24.3 for Omicron; Ct 20.5, 95% CI 19.2-21.8 for Delta) and the clearance phase was shorter for Omicron infections (5.35 days, 95% CI 4.78-6.00 for Omicron; 6.23 days, 95% CI 5.43-7.17 for Delta), though the rate of clearance was similar (3.13 Ct/day, 95% CI 2.75-3.54 for Omicron; 3.15 Ct/day, 95% CI 2.69-3.64 for Delta). Conclusions. While Omicron infections feature lower peak viral RNA and a shorter clearance phase than Delta infections on average, it is unclear to what extent these differences are attributable to more immunity in this largely vaccinated population or intrinsic characteristics of the Omicron variant. Further, these results suggest that Omicron's infectiousness may not be explained by higher viral load measured in the nose and mouth by RT-PCR. The substantial fraction of individuals with Ct values <30 at days 5 of infection, particularly in those detected due to symptom onset or concern for contact with an infected individual, underscores the heterogeneity of the infectious period, with implications for isolation policies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Hepatitis D
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.06.21264641

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Deltas infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average [~]6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Deltas enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.


Subject(s)
Coronavirus Infections
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.31.21262938

ABSTRACT

Effectively monitoring the spread of SARS-CoV-2 variants is essential to efforts to counter the ongoing pandemic. Wastewater monitoring of SARS-CoV-2 RNA has proven an effective and efficient technique to approximate COVID-19 case rates in the population. Predicting variant abundances from wastewater, however, is technically challenging. Here we show that by sequencing SARS-CoV-2 RNA in wastewater and applying computational techniques initially used for RNA-Seq quantification, we can estimate the abundance of variants in wastewater samples. We show by sequencing samples from wastewater and clinical isolates in Connecticut U.S.A. between January and April 2021 that the temporal dynamics of variant strains broadly correspond. We further show that this technique can be used with other wastewater sequencing techniques by expanding to samples taken across the United States in a similar timeframe. We find high variability in signal among individual samples, and limited ability to detect the presence of variants with clinical frequencies <10%; nevertheless, the overall trends match what we observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in variant prevalence in situations where clinical sequencing is unavailable or impractical.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.14.21260307

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in major neutralizing antibody-binding sites can affect humoral immunity induced by infection or vaccination (1-6). We analysed the development of anti-SARS-CoV-2 antibody and T cell responses in previously infected (recovered) or uninfected (naive) individuals that received mRNA vaccines to SARS-CoV-2. While previously infected individuals sustained higher antibody titers than uninfected individuals post-vaccination, the latter reached comparable levels of neutralization responses to the ancestral strain than previously infected individuals 7 days after the second vaccine dose. T cell activation markers measured upon spike or nucleocapsid peptide in vitro stimulation showed a progressive increase after vaccination in the time-points analysed. Comprehensive analysis of plasma neutralization using 16 authentic isolates of distinct locally circulating SARS-CoV-2 variants revealed a range of reduction in the neutralization capacity associated with specific mutations in the spike gene: lineages with E484K and N501Y/T (e.g., B.1.351 and P.1) had the greatest reduction, followed by lineages with L452R (e.g., B.1.617.2) or with E484K (without N501Y/T). While both groups retained neutralization capacity against all variants, plasma from previously infected vaccinated individuals displayed overall better neutralization capacity when compared to plasma from uninfected individuals that also received two vaccine doses, pointing to vaccine boosters as a relevant future strategy to alleviate the impact of emerging variants on antibody neutralizing activity.

8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.01.21259859

ABSTRACT

Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is detected. However, this assessment requires that a true comparison can be made between the new variant and its predecessors because factors other than the virus genotype may influence spread and transmission. In this study, we develop a framework that integrates genomic surveillance data to estimate the relative effective reproduction number (Rt) of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. We find that the Rt of B.1.1.7 was 6-10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses open-source methods requiring minimal computational resources, may be used to monitor near real-time variant dynamics in a myriad of settings.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.21.21259289

ABSTRACT

Genomic sequencing is crucial to understanding the epidemiology and evolution of SARS-CoV-2. Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal swabs, as input into whole genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays, however saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from nasopharyngeal swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.

10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.24.21253992

ABSTRACT

Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patients immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.


Subject(s)
Immunologic Deficiency Syndromes , COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.16.21251535

ABSTRACT

To test whether acute infection with B.1.1.7 is associated with higher or more sustained nasopharyngeal viral concentrations, we assessed longitudinal PCR tests performed in a cohort of 65 individuals infected with SARS-CoV-2 undergoing daily surveillance testing, including seven infected with B.1.1.7. For individuals infected with B.1.1.7, the mean duration of the proliferation phase was 5.3 days (90% credible interval [2.7, 7.8]), the mean duration of the clearance phase was 8.0 days [6.1, 9.9], and the mean overall duration of infection (proliferation plus clearance) was 13.3 days [10.1, 16.5]. These compare to a mean proliferation phase of 2.0 days [0.7, 3.3], a mean clearance phase of 6.2 days [5.1, 7.1], and a mean duration of infection of 8.2 days [6.5, 9.7] for non-B.1.1.7 virus. The peak viral concentration for B.1.1.7 was 19.0 Ct [15.8, 22.0] compared to 20.2 Ct [19.0, 21.4] for non-B.1.1.7. This converts to 8.5 log10 RNA copies/ml [7.6, 9.4] for B.1.1.7 and 8.2 log10 RNA copies/ml [7.8, 8.5] for non-B.1.1.7. These data offer evidence that SARS-CoV-2 variant B.1.1.7 may cause longer infections with similar peak viral concentration compared to non-B.1.1.7 SARS-CoV-2. This extended duration may contribute to B.1.1.7 SARS-CoV-2s increased transmissibility.


Subject(s)
Acute Disease , Infections
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.10.21251540

ABSTRACT

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2500 COVID-19 cases associated with this variant have been detected in the US since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight the primary ports of entry for B.1.1.7 in the US and locations of possible underreporting of B.1.1.7 cases. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Subject(s)
COVID-19
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.28.21250486

ABSTRACT

With the emergence of SARS-CoV-2 variants that may increase transmissibility and/or cause escape from immune responses1-3, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant first detected in the UK4,5 could be serendipitously detected by the ThermoFisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike {Delta}69-70, would cause a 'spike gene target failure' (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern that lack spike {Delta}69-70, such as B.1.351 (also 501Y.V2) detected in South Africa6 and P.1 (also 501Y.V3) recently detected in Brazil7. We identified a deletion in the ORF1a gene (ORF1a {Delta}3675-3677) in all three variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a {Delta}3675-3677 as the primary target and spike {Delta}69-70 to differentiate, we designed and validated an open source PCR assay to detect SARS-CoV-2 variants of concern8. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence spread of B.1.1.7, B.1.351, and P.1.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.21.20217042

ABSTRACT

SARS-CoV-2 diagnostics that report viral RNA concentrations can be used to determine a patient's stage of infection, but this potential has not yet been realized due to a lack of prospective longitudinal data to calibrate such inferences. Here, we report the viral RNA trajectories for 68 individuals using quantitative PCR testing. On average, symptomatic and asymptomatic individuals reached similar peak viral RNA concentrations (22.2 Ct, 95% credible interval [19.1, 25.1] vs. 22.4 Ct [20.2, 24.5]) within similar amounts of time (2.9 days [0.7, 4.7] vs. 3.0 days [1.3, 4.3]), but acute shedding lasted longer for symptomatic individuals (10.5 days [6.5, 14.0] vs. 6.7 days [3.2, 9.2]). A second test within 2 days after an initial positive PCR result reliably indicated whether viral RNA concentration was increasing, decreasing, or in a low-level persistent phase. Quantitative viral RNA assessment, informed by viral trajectory, can improve algorithms for clinical and public health management.


Subject(s)
COVID-19
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.03.20167791

ABSTRACT

Current bottlenecks for improving accessibility and scalability of SARS-CoV-2 testing include diagnostic assay costs, complexity, and supply chain shortages. To resolve these issues, we developed SalivaDirect, which received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration on August 15th, 2020. The critical component of our approach is to use saliva instead of respiratory swabs, which enables non-invasive frequent sampling and reduces the need for trained healthcare professionals during collection. Furthermore, we simplified our diagnostic test by (1) not requiring nucleic acid preservatives at sample collection, (2) replacing nucleic acid extraction with a simple proteinase K and heat treatment step, and (3) testing specimens with a dualplex quantitative reverse transcription PCR (RT-qPCR) assay. We validated SalivaDirect with reagents and instruments from multiple vendors to minimize the risk for supply chain issues. Regardless of our tested combination of reagents and instruments from different vendors, we found that SalivaDirect is highly sensitive with a limit of detection of 6-12 SARS-CoV-2 copies/L. When comparing SalivaDirect to paired nasopharyngeal swabs using the authorized ThermoFisher Scientific TaqPath COVID-19 combo kit, we found high agreement in testing outcomes (>94%). In partnership with the National Basketball Association (NBA) and Players Association, we conducted a large-scale (n = 3,779) SalivaDirect usability study and comparison to standard nasal/oral tests for asymptomatic and presymptomatic SARS-CoV-2 detection. From this cohort of healthy NBA players, staff, and contractors, we found that 99.7% of samples were valid using our saliva collection techniques and a 89.5% positive and >99.9% negative test agreement to swabs, demonstrating that saliva is a valid and noninvasive alternative to swabs for large-scale SARS-CoV-2 testing. SalivaDirect is a flexible and inexpensive ($1.21-$4.39/sample in reagent costs) option to help improve SARS-CoV-2 testing capacity. Register to become a designated laboratory to use SalivaDirect under our FDA EUA on our website: publichealth.yale.edu/salivadirect/.


Subject(s)
COVID-19
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.04.20109306

ABSTRACT

The COVID-19 pandemic has created unprecedented challenges in diagnostic testing. At the beginning of the epidemic, a confluence of factors resulted in delayed deployment of PCR-based diagnostic tests, resulting in lack of testing of individuals with symptoms of the disease. Although these tests are now more widely available, it is estimated that a three- to ten-fold increase in testing capacity will be required to ensure adequate surveillance as communities reopen(1). In response to these challenges, we evaluated potential roles of host-response based screening in the diagnosis of COVID-19. Previous work from our group showed that the nasopharyngeal (NP) level of CXCL10, a protein produced as part of the host response to viral infection, is a sensitive predictor of respiratory virus infection across a wide spectrum of viruses(2). Here, we show that NP CXCL10 is elevated during SARS-CoV-2 infection and use a CXCL10-based screening strategy to identify four undiagnosed cases of COVID-19 in Connecticut in early March. In a second set of samples tested at the Yale New Haven Hospital, we show that NP CXCL10 had excellent performance as a rule-out test (NPV 0.99, 95% C.I. 0.985-0.997). Our results demonstrate how biomarker-based screening could be used to leverage existing PCR testing capacity to rapidly enable widespread testing for COVID-19.


Subject(s)
COVID-19 , Virus Diseases , Respiratory Tract Infections
17.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-28583.v1

ABSTRACT

Background: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. Case presentation: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. Conclusion: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19.  Central nervous system inflammation may associate with neurologic manifestations of disease.


Subject(s)
Brain Diseases , Infections , Severe Acute Respiratory Syndrome , COVID-19 , Seizures , Inflammation
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.30.20048108

ABSTRACT

The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays are being used by clinical, research, and public health laboratories. However, it is currently unclear if results from different tests are comparable. Our goal was to evaluate the primer-probe sets used in four common diagnostic assays available on the World Health Organization (WHO) website. To facilitate this effort, we generated RNA transcripts to be used as assay standards and distributed them to other laboratories for internal validation. We then used (1) RNA transcript standards, (2) full-length SARS-CoV-2 RNA, (3) pre-COVID-19 nasopharyngeal swabs, and (4) clinical samples from COVID-19 patients to determine analytical efficiency and sensitivity of the qRT-PCR primer-probe sets. We show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 virus copies per reaction, except for the RdRp-SARSr (Charite) confirmatory primer-probe set which has low sensitivity. Our findings characterize the limitations of currently used primer-probe sets and can assist other laboratories in selecting appropriate assays for the detection of SARS-CoV-2.


Subject(s)
COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.25.20043828

ABSTRACT

Since its emergence and detection in Wuhan, China in late 2019, the novel coronavirus SARS-CoV-2 has spread to nearly every country around the world, resulting in hundreds of thousands of infections to date. The virus was first detected in the Pacific Northwest region of the United States in January, 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the U.S., we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated impacts of federal travel restrictions. This study provides evidence for widespread, sustained transmission of SARS-CoV-2 within the U.S. and highlights the critical need for local surveillance.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL